2008 - July 2012 Monitoring Report Construction of a new Air Separation Plant by Air Liquide Severstal, Russia

General Director CJSC Air Liquide Severstal A.Shuvalov

Construction of a new Air Separation Plant by Air Liquide Severstal, Russia

2012 MONITORING REPORT

Version 3, 27 September, 2012. Responsible for preparation and issuing - Bondarenko D.

CONTENTS

nnex 12 Certificate for pressure transmitters 3051 series (PT, FT devices)

Annex 13 Certificate for thermocouples 65 series

SECTION A General project activity information

A.1. Date and Version of Monitoring Report:

Project Title: "Construction of a new Air Separation Plant by Air Liquide Severstal, Russia"

This is version 3 of the Monitoring Report dated 27 September, 2012.

A.2. Key Documents:

Determination Report (Russia/0044-2/2010, v.2) by Bureau Veritas Certification issued on March 3, 2010.

Project Design Document, version 7, dated March 2, 2010

A.3. Short description of the project activity:

The company CJSC Air Liquide Severstal (ALS) commissioned, in December 2007, a state-of-the-art cryogenic air separation plant on the premises of the Severstal steel production complex in Cherepovets in the Vologda Region of Russia. The plant's purpose is to produce technical gases, especially high pressure oxygen and nitrogen, and deliver them to the steel plant. The facility has a maximum design capacity of 90,000 Sm³/hr¹ of high pressure purified oxygen. It can also produce other gases, such as high-pressure nitrogen (30,000 Sm³/hr), low-pressure nitrogen (30,000 Sm³/hr) and argon (1,470 Sm³/hr).

The key piece of equipment of the ALS facility is the cold box where the air separation takes place. The separated gases are liquefied, and the liquids are pumped to high pressure. Liquid oxygen and liquid nitrogen are pumped to a pressure of maximum 31 bar (30.6 atm), while Argon is pumped to a pressure of maximum 17 bar (16.8 atm). The project also includes the installation of three new air compressors, two of which are main air compressors that supplement the compressed air that ALS purchases, and one is a booster air compressor that recompresses the compressed air to a higher pressure.

A.4. Project approval by the parties:

The Decree of Ministry of Economic Development of the Russian Federation № 277 dtd. 16th May 2012 "About approving the list of projects, realizing in accordance with clause 6 of Kyoto Protocol to the United Nations Framework Convention on Climate Change"

Declaration of Approval of NL Agency Ministry of Economic Affairs, Agriculture and Innovation dtd 02 Feb 2012.

A.5. Monitoring period:

• Monitoring period starting date: January 1, 2008

1 All gas volumes are presented in Sm³, i.e. under standard conditions of 20°C and 760 mmHg.

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia"

Page 4

• Monitoring period closing date: July 31, 2012

A.6. Monitoring data:

Estimation of project emissions is provided with the next data:

- Project Design Document, version 7, dated March 2, 2010

2008 data was not finalized at the moment of PDD edition, 2008 monitoring data doesn't exceed the 2% materiality value of emission reductions in comparison with PDD data, hereinafter PDD 2008 annual values are used as more conservative.

A.7. Calibration of the measuring equipment:

Calibrations were provided by accredited organisation (ФБУ "Череповецкий ЦСМ"). Since 2012 there is a direct contract between ALS and ФБУ "Череповецкий ЦСМ", 2008-2011 was provided through an intermediary of STEK LLC.

SECTION B Key monitoring activities according to the monitoring plan

The Monitoring Plan detailed in section D of the PDD requires the measurement of six variables.

B.1. Electricity consumption by ALS plant ($EC_{ALS,y}$):

Electricity consumption (in MWh) is measured by the monthly invoices sent by OAO Severstal (Severstal). The invoices are based on the official electricity meter (manufacturer Energomera, model C6850, location GPP14), which is located on the Severstal premises.

For cross-checking purposes ALS has a meter (Model SEPAM, location RP113/RP114) on its premises. Monthly meter readings are taking by the subcontractor STEK and entered into an EXCEL spreadsheet, which is kept on the ALS server.

* 2008 annual value adjusted according to Section A.6. of Monitoring Rep	*	2008 annual	value adjusted	d according to	Section A.6.	of Monitoring Repo	rt.
--	---	-------------	----------------	----------------	--------------	--------------------	-----

Month	2008	2009	2010	2011	2012
January	33,493	21,760	33,309.6	22,599	32,496
February	31,608	26,886	30,694.4	28,782	30,914
March	33,86	30,194	33,357.2	31,531	31,295
April	29,111	29,618	30,420.4	31,252	26,807
May	33,964	20,967	33,458.8	32,190	26,533
June	32,127	29,067	31,045.1	31,828	30,469
July	33,354	32,190	28,808.6	32,781	32,601
August	31,71	33,416	32,840.4	30,313	-
September	29,864	32,322	31,886.4	30,031	-
October	32,579	33,748	32,094.2	32,977	-
November	27,262	31,628	31,754.8	30,475	-
December	23,615	33,187	33,409.6	33,065	-
Total	372,655*	354,982	383,080	367,822	211,115

B.2. Consumption of compressed air by ALS plant ($Q_{AIR,ALS,y}$):

Compressed air consumption (in 1000 Sm³) is measured by the monthly invoices sent by Severstal. The invoices are based on meter readings from a Deltafluid flow meter, which is located on ALS premises. It is an EMERSON-ROSEMOUNT Model3051 meter and wears the tag FI030. ALS Instrumentation Operators are preparing a monthly report on the meter readings. The reports are reviewed and signed by the Plant Manager.

^{* 2008} annual value adjusted according to Section A.6. of Monitoring Report.

		3			
Month	2008	2009	2010	2011	2012
January	56,222	114,145	46,681	13,269	39,845
February	48,348	31,010	54,422	18,632	45,245
March	49,962	17,400	53,576	11,595	23,395
April	29,554	6,148	42,417	34,990	31,176
May	60,703	4,286	55,469	34,309	39,845
June	57,619	41,875	19,248	51,133	32,385
July	94,577	35,788	73,586	57,543	42,277
August	68,906	54,612	58,847	94,994	-
September	38,685	54,672	34,283	64,867	-
October	25,045	69,176	37,991	59,318	-
November	0,016	42,834	42,344	35,561	-
December	56,967	46,089	58,488	49,472	-
Total	586,605*	518,035	577,352	525,683	254,168

B.3. Steam consumption by ALS plant $(Q_{ST,y})$:

Steam consumption (in Gcal) is measured by the monthly invoices sent by Severstal. The invoices are based on meter readings from the "Logika" heat meter, model CTP 961. The meter is located on Severstal premises. ALS may request a control of it at any moment if there is doubt about the accuracy of the measurement.

* 2008 annual value adjusted according to Section A.6. of Monitoring Report.

	Q _{ST, y} , Gcal						
Month	2008	2009	2010	2011	2012		
January	1,549	959	1,502	1,152	1,104		
February	1,161	692	1,687	1,034	0,746		
March	1,286	1,070	1,757	0,831	0,768		
April	0,97	735	1,719	0,991	0,743		
May	1,493	2,242	1,748	1,027	0,787		
June	1,308	755	739	1,588	0,750		
July	1,465	1,016	2,139	1,479	-		
August	1,601	1,100	1,156	1,097	-		
September	1,144	1,311	1,204	1,043	-		
October	1,144	1,993	1,225	1,374	-		
November	0,907	1,227	1,117	0,898	-		
December	2,348	1,194	1,959	1,072	-		
Total	16,376*	14,294	17,952	13,584	4,899		

B.4. Delivery of high-pressure oxygen from ALS cold box $(P_{GOX,y})$:

Oxygen delivery from the ALS cold box (in 1000 Sm³ O₂) is measured by the meter readings from a Deltafluid flow meter. The commercial counter is an EMERSON-ROSEMOUNT Model3051 meter and wears the tag FI001. In addition there is a process meter with the tag FI1510.

For cross-checking purposes, ALS Instrumentation Operators are preparing a monthly report on the meter readings. The reports are reviewed and signed by the Plant Manager.

* 2008 annual value adjusted according to Section A.6. of Monitoring Report.

	P _{GOX, y} , 1000 Sm ³ O ₂							
Month	2008	2009	2010	2011	2012			
January	60,707	46,872	62,530	31,286	59,902			
February	57,544	48,970	58,656	48,538	58,963			
March	63,32	48,681	62,039	53,207	55,599			
April	52,771	48,082	53,926	57,332	47,381			
May	64,068	28,527	61,646	57,565	46,658			
June	57,459	51,817	50,956	58,698	53,949			
July	64,823	58,185	51,211	60,615	59,294			
August	56,678	62,983	58,981	60,739	-			
September	50,27	61,078	54,899	57,094	-			
October	53,805	65,258	55,438	63,895	-			
November	35,613	56,898	58,070	54,546	_			
December	37,715	61,788	63,150	63,144	_			
Total	650,566*	639,137	691,502	666,658	381,745			

B.5. Delivery of high pressure oxygen from ALS liquid oxygen storage tank ($P_{LOX, y}$):

Oxygen delivery from the LOX storage tank (in 1000 Sm³ O₂) is measured by the meter readings from a Deltafluid flow meter. It is an EMERSON-ROSEMOUNT Model3051 meter and wears the tag FI002.

For cross-checking purposes, ALS Instrumentation Operators are preparing a monthly report on the meter readings. The reports are reviewed and signed by the Plant Manager.

* 2008 annual value adjusted according to Section A.6. of Monitoring Report.

	P _{LOX, y} , 1000 Sm ³ O ₂									
Month	2008 2009 2010 2011 2012									
January	1,275	0,561	1,111	0,705	0,798					
February	1,051	0,031	1,683	0,852	1,126					
March	1,027	0,707	1,657	0,156	0,316					
April	0,569	0,012	1,727	0,550	1,795					
May	1,492	1,126	1,907	0,519	0,869					

June	0,655	0,053	0,025	1,721	0,192
July	1,516	0,458	2,648	1,570	0,762
August	2,24	0,634	0,804	0,769	-
September	1,206	1,023	0,896	0,725	-
October	0,756	2,188	0,94	1,232	-
November	0,398	0,893	0,708	0,348	-
December	0,066	0,831	2,483	0,629	_
Total	10,483*	8,517	16,589	9,775	5,858

B.6. Total delivery of high pressure gaseous nitrogen from ALS plant ($P_{GAN, y}$):

High-pressure Nitrogen delivery from the ALS cold box (in 1000 Sm³ N₂) is measured by the meter readings from a Deltafluid flow meter. The commercial counter is an EMERSON-ROSEMOUNT Model3051 meter and wears the tag FI010. In addition there is a process meter with the tag FI1500. For cross-checking purposes, ALS Instrumentation Operators are preparing a monthly report on the meter readings. The reports are reviewed and signed by the Plant Manager.

* 2008 annual value adjusted according to Section A.6. of Monitoring Report.

	P _{GAN, y} , 1000 Sm ³ N ₂						
Month	2008	2009	2010	2011	2012		
January	16,807	15,241	18,100	9,741	20,435		
February	15,929	14,424	18,602	15,648	20,186		
March	15,569	15,513	17,276	16,902	17,972		
April	12,017	16,134	17,829	16,868	14,762		
May	17,309	8,935	20,610	17,427	14,508		
June	15,684	13,244	18,939	17,370	18,156		
July	17,731	15,982	18,547	17,383	19,723		
August	15,515	18,096	18,666	17,872	-		
September	14,385	17,176	17,068	16,942	-		
October	15,768	18,235	16,527	18,890	-		
November	11,231	15,747	17,973	18,973	-		
December	13,137	18,091	18,354	21,528	-		
Total	181,082*	186,818	218,491	205,542	125,743		

B.7. Archiving of Monitoring Data

All of the above records are maintained both electronically and on paper. They will be archived until two years after the end of the crediting period.

(a) Electricity consumption by ALS plant (EC_{ALS, y})

The ALS Accounting Department retains the original invoice. The Excel file that is maintained by the STEK employee and scanned copies of the invoices are retained electronically on the server.

(b) Consumption of compressed air by ALS plant (Q_{AIR, ALS, v})

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia"

Page 9

The ALS Accounting Department retains the original invoice and the reports signed by the ALS Plant Manager. The monthly reports prepared by the ALS Instrumentation Operator are retained electronically on the server.

- (c) Steam consumption by ALS plant $(Q_{ST, y})$ The ALS Accounting Department retains the original invoice.
- (d) Delivery of high-pressure oxygen from ALS cold box $(P_{GOX,y})$ The ALS Accounting Department retains the original invoice and the reports signed by the ALS Plant Manager. The reports prepared by ALS Instrumentation Operators are retained electronically on the server.
- (e) Delivery of high pressure oxygen from ALS liquid oxygen storage tank $(P_{LOX,y})$ The ALS Accounting Department retains the original invoice and the reports signed by the ALS Plant Manager. The reports prepared by ALS Instrumentation Operators are retained electronically on the server.
- (f) Total delivery of high pressure gaseous nitrogen from ALS plant ($P_{GAN,y}$) The ALS Accounting Department retains the original invoice and the reports signed by the ALS Plant Manager. The reports prepared by ALS Instrumentation Operators are retained electronically on the server.

B.8. Special event log

No special events affecting monitoring activities or monitored data occurred during 2008-July 2012.

SECTION C Quality assurance and quality control measures

Variable	QA/QC procedures
P1 EC _{ALS, y}	The meter is located on Severstal premises. Vologda Energo checks the meter once a year. ALS has a meter (Model SEPAM, location RP113/RP114) on its premises and is able to contest the power consumption figures if deviations are observed. Monthly meter readings are taking by the subcontractor STEK and entered into an EXCEL spreadsheet, which is kept on the server.
P3 Qair, als, y	Calibration of the Deltafluid flow meter takes place at least every two years and was last done in May 2009. ALS Instrumentation Operators are preparing a monthly report on the meter readings. The calibration records are archived by the ALS Instrumentation Manager.
P5 Q _{ST, y}	The meter on which the invoice is based is located on Severstal premises. The Plant Manager is checking the steam volume for consistency before the invoice is paid.
B1 P _{GOX, y}	Calibration of the Deltafluid flow meter takes place at least every two years and was last done in May 2009. ALS Instrumentation Operators are preparing a monthly report on the meter readings. The calibration records are archived by the ALS Instrumentation Manager.
B2 P _{LOX, y}	Calibration of the Deltafluid flow meter takes place at least every two years and was last done in May 2009. ALS Instrumentation Operators are preparing a monthly report on the meter readings. The calibration records are archived by the ALS Instrumentation Manager.
B4 P _{GAN, y}	Calibration of the Deltafluid flow meter takes place at least every two years and was last done in May 2009. ALS Instrumentation Operators are preparing a monthly report on the meter readings. The calibration records are archived by the ALS Instrumentation Manager.

SECTION D

SECTION E

SECTION F Calculation of GHG emission reductions

F.1. Project emissions:

The Monitoring Plan in section D of the PDD contains six formulas to calculate the project emissions.

(1) $EF_{ELEC, y} = EF_{ELEC, GEN, y} / (1 - TL_{ELEC, y} / 100)$

Where

EF_{ELEC. v}Carbon emission factor for consumption of grid-based electricity in year y

EF_{ELEC, GEN, y} Carbon emission factor for generation of grid-based electricity in year y

TL_{ELEC, y} Transmission losses for grid-based electricity in year y

Variable	Unit	2008	2009	2010	2011	2012	Source
EF _{ELEC, GEN, y}	t CO ₂ / MWh	0,556	0,550	0,545	0,540	0,536	Section B.1 of PDD (B13)
TL _{ELEC, y}	%	9,400	8,793	8,308	7,823	7,338	Section B.1 of PDD (B14)
EF _{ELEC} , y	t CO ₂ / MWh	0,613	0,603	0,594	0,586	0,578	Calculated

(2)
$$PE_{ELEC, y} = EC_{ALS, y} * EF_{ELEC, y}$$

Where

PE_{ELEC, y}Project emissions from electricity consumption by ALS plant in year y

EC_{ALS,y} Electricity consumption by ALS plant in year y

EF_{ELEC, y}Carbon emission factor for grid-based electricity in year y

Variable	Unit	2008	2009	2010	2011	2012	Source
EF _{ELEC, y}	t CO ₂ / MWh	0,613	0,603	0,594	0,586	0,578	Equation (1)
EC _{ALS,y}	MWh	372,655	354,983	383,079	367,824	211,115	Section B.1 of this report
PE _{ELEC, y}	t CO ₂	228,488	213,999	227,730	215,616	122,024	Calculated

(3)
$$EC_{AIR, y} = Q_{AIR, ALS, y} * SFC_{ELEC, AIR}$$

Where

EC_{AIR, y} Electricity consumption for compressed air consumed by ALS plant in year y

 $Q_{AIR, ALS, y}$ Consumption of compressed air by ALS plant in year y SFC_{ELEC, AIR} Specific electricity consumption for compressed air

Page 12

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia"

Variable	Unit	2008	2009	2010	2011	2012	Source
Qair, als, y	1000 Sm ³	586,605	518,035	577,352	525,683	254,168	Section B.2 of this report
SFC _{ELEC, AIR}	MWh / 1000 Sm ³	0,1041	0,1041	0,1041	0,1041	0,1041	Section B.1 of the PDD (B7)
EC _{AIR, y}	MWh	61,049	53,913	60,086	54,709	26,452	Calculated

(4) $PE_{AIR, y} = EC_{AIR, y} * EF_{ELEC, y}$

Where

PE_{AIR, y} Project emissions from consumption of compressed air by ALS plant in year y EC_{AIR, y} Electricity consumption for compressed air consumed by ALS plant in year y

EF_{ELEC, y} Carbon emission factor for grid-based electricity in year y

Variable	Unit	2008	2009	2010	2011	2012	Source
EC _{AIR, y}	MWh	61,049	53,913	60,086	54,709	26,452	Equation (3)
EF _{ELEC, y}	t CO ₂ / MWh	0,613	0,603	0,594	0,586	0,578	Equation (1)
PE _{AIR, y}	t CO ₂	37,431	32,501	35,720	32,070	15,289	Calculated

(5) $PE_{ST, y} = Q_{ST, y} * EF_{GAS, ST}$

Where

PE_{ST, y} Project emissions from consumption of steam by ALS plant in year y

Q_{ST, y} Steam consumption by ALS plant in year y

EF_{GAS, ST} Carbon emission factor for steam generated by natural gas combustion

Variable	Unit	2008	2009	2010	2011	2012	Source
Q _{ST, y}	Gcal	16,376	14,294	17,952	13,586	4,898	Section B.3 of this report
EF _{GAS, ST}	t CO ₂ / Gcal	0,1243	0,1243	0,1243	0,1243	0,1243	Section B.1 of the PDD (B11)
PE _{ST, y}	t CO ₂	2,036	1,777	2,231	1,689	0,609	Calculated

(6)
$$PE_y = PE_{ELEC, y} + PE_{AIR, y} + PE_{ST, y}$$

Where

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia"

 PE_{v} Total Project Emissions in year y

PE_{ELEC, v}Project emissions from electricity consumption by ALS plant in year y

Project emissions from consumption of compressed air by ALS plant in year y PE_{AIR, v}

Project emissions from consumption of steam by ALS plant in year y $PE_{ST, y}$

Variable	Unit	2008	2009	2010	2011	2012	Source
PE _{ELEC, y}	t CO ₂	228,488	213,999	227,730	215,616	122,024	Equation (2)
PE _{AIR, y}	t CO ₂	37,431	32,501	35,720	32,070	15,289	Equation (4)
PE _{ST, y}	t CO ₂	2,036	1,777	2,231	1,689	0,609	Equation (5)
PE _y	t CO ₂	267,955	248,277	265,681	249,374	137,922	Calculated

F.2. Baseline emissions:

The Monitoring Plan in section D of the PDD contains eight formulas to calculate the baseline emissions.

(7)
$$EF_{ELEC, y} = EF_{ELEC, GEN, y} / (1 - TL_{ELEC, y} / 100)$$

Where

EF_{ELEC. v}Carbon emission factor for consumption of grid-based electricity in year y

Carbon emission factor for generation of grid-based electricity in year y $EF_{ELEC, GEN, y}$

TL_{ELEC, v} Transmission losses for grid-based electricity in year y

Variable	Unit	2008	2009	2010	2011	2012	Source
EF _{ELEC, GEN, y}	t CO ₂ / MWh	0,556	0,550	0,545	0,540	0,536	Section B.1 of PDD (B13)
TL _{ELEC, y}	%	9,400	8,793	8,308	7,823	7,338	Section B.1 of PDD (B14)
EF _{ELEC} , y	t CO ₂ / MWh	0,613	0.603	0.594	0,586	0,578	Calculated

(8)
$$P_{OX, y} = P_{GOX, y} + P_{LOX, y}$$

Where

Total delivery of high pressure oxygen from ALS plant in year y $P_{OX, v}$ Delivery of high-pressure oxygen from ALS cold box in year y $P_{GOX, v}$

Delivery of high pressure oxygen from ALS liquid oxygen storage tank in year y $P_{LOX, y}$

Variable	Unit	2008	2009	2010	2011	2012	Source
D	1000 Sm ³	650,564	639,13	691,50	666,659	381,74	Section B.4 of this
$P_{\text{GOX, y}}$	1000 5111		9	2	000,039	6	report
$P_{LOX, y}$	1000 Sm ³	10,483	8,517	16,589	9,776	5,858	Section B.5 of this

Page 13

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia" Page 14

							report
P _{OX, y}	1000 Sm ³	661,047	647,65	708,09 1	676,435	387,60 4	Calculated

(9) $BE_{ELEC, y} = P_{OX, y} * SFC_{ELEC} * EF_{ELEC, y}$

Where

BE_{ELEC, y} Baseline emissions from electricity consumption in reference facility in year y

P_{OX, y} Total delivery of high pressure oxygen from ALS plant in year y

SFC_{ELEC} Specific electricity consumption of the reference plant EF_{ELEC}, vCarbon emission factor for grid-based electricity in year y

Variable	Unit	2008	2009	2010	2011	2012	Source
P _{OX, y}	1000 Sm ³	661,047	647,656	708,091	676,435	387,604	Equation (8)
SFC _{ELEC}	MW h/ 1000 Sm ³	0,0269	0,0269	0,0269	0,0269	0,0269	Section B.1 of the PDD (B8)
EF _{ELEC, y}	t CO ₂ / MWh	0,613	0,603	0,594	0,586	0,578	Equation (1)
BE _{ELEC} , y	t CO ₂	10,903	10,503	11,323	10,666	6,027	Calculated

(10)
$$BE_{AIR, y} = P_{OX, y} * SC_{AIR} * SFC_{ELEC, AIR} * EF_{ELEC, y}$$

Where

BE_{AIR, y} Baseline emissions from consumption of compressed air in reference facility in year y

P_{OX, y} Total delivery of high pressure oxygen from ALS plant in year y SC_{AIR} Specific compressed air consumption of the reference plant

SFC_{ELEC, AIR} Specific electricity consumption for compressed air EF_{ELEC, y}Carbon emission factor for grid-based electricity in year y

Variable	Unit	2008	2009	2010	2011	2012	Source
P _{OX, y}	1000 Sm ³	661,047	647,656	708,091	676,435	387,604	Equation (8)
SC _{AIR}	1000 Sm ³ Air / 1000 Sm ³ O ₂	6,3187	6,3187	6,3187	6,3187	6,3187	Section B.1 of the PDD
SFC _{ELEC,}	MWh / 1000 Sm ³	0,1041	0,1041	0,1041	0,1041	0,1041	Section B.1 of the PDD

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia" Pa

							(B7)
EF _{ELEC, y}	t CO ₂ / MWh	0,613	0,603	0,594	0,586	0,578	Equation (1)
BE _{AIR, y}	t CO ₂	266,534	256,751	276,813	260,754	147,326	Calculated

(11) $BE_{ST, y} = P_{OX, y} * SC_{ST} * EF_{GAS, ST}$

Where

BE_{ST, y} Baseline emissions from steam consumption in reference facility year y

P_{OX,y} Total delivery of high pressure oxygen from ALS plant in year y

SC_{ST} Specific steam consumption by reference plant

EF_{GAS, ST} Carbon emission factor for steam generated by natural gas combustion

Variable	Unit	2008	2009	2010	2011	2012	Source
P _{OX, y}	1000 Sm ³	661,047	647,656	708,09 1	676,435	387,604	Equation (8)
SC _{ST}	Gcal / 1000 Sm3 O2	0,060	0,060	0,060	0,060	0,060	Section B.1 of the PDD (B5)
EF _{GAS, ST}	t CO ₂ / Gcal	0,124	0,124	0,124	0,124	0,124	Section B.1 of the PDD (B11)
BE _{ST, y}	t CO ₂	4,930	4,830	5,281	5,045	2,891	Calculated

(12)
$$BE_{HPGOX, y} = P_{OX, y} * SFC_{ELEC, HPGOX} * EF_{ELEC, y}$$

Where

BE_{HPGOX, y} Baseline emissions from electricity consumption by oxygen compressors in year y

P_{OX, y} Total delivery of high pressure oxygen from ALS plant in year y

SFC_{ELEC, HPGOX} Specific electricity consumption by oxygen compressors EF_{ELEC, v} Carbon emission factor for grid-based electricity in year y

Variable	Unit	2008	2009	2010	2011	2012	Source
P _{OX, y}	1000 Sm ³	661,047	647,654	708,091	676,433	387,60	Equation (8)
SFC _{ELEC} , HPGOX	MWh / 1000 Sm3 O2	0,1941	0,1941	0,1941	0,1941	0,1941	Section B.1 of the PDD (B10)
EF _{ELEC, y}	t CO ₂ / MWh	0,613	0,603	0,594	0,586	0,578	Equation (1)
BE _{HPGOX, y}	t CO ₂	78,663	75,775	81,696	76,956	43,480	Calculated

Page 15

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia"

Page 16

(13) $BE_{HPGAN, y} = P_{GAN, y} * SFC_{ELEC, HPGAN} * EF_{ELEC, y}$

Where

BE_{HPGAN, y} Baseline emissions from electricity consumption by nitrogen compressors in year y

P_{GAN, y} Total delivery of high pressure gaseous nitrogen from ALS plant in year y

SFC_{ELEC, HPGAN} Specific electricity consumption by nitrogen compressors EF_{ELEC, y} Carbon emission factor for grid-based electricity in year y

Variable	Unit	2008	2009	2010	2011	2012	Source
P _{GAN, y}	1000 Sm ³	181,08 2	186,818	218,491	205,544	125,742	Section B.6 of this report
SFC _{ELEC, HPGAN}	MWh / 1000 Sm3 N2	0,1941	0,1941	0,1941	0,1941	0,1941	Section B.1 of the PDD (B10)
EF _{ELEC, y}	t CO ₂ / MWh	0,613	0,603	0,594	0,586	0,578	Equation (1)
BE _{HPGAN, y}	t CO ₂	21,548	21,858	25,208	23,379	14,107	Calculated

(14)
$$BE_y = BE_{ELEC, y} + BE_{AIR, y} + BE_{ST, y} + BE_{HPGOX, y} + BE_{HPGAN, y}$$

Where

BE_v Total baseline emissions in year y

 $BE_{ELEC, y}$ Baseline emissions from electricity consumption in reference facility in year y $BE_{AIR, y}$ Baseline emissions from consumption of compressed air in reference facility in year y

BE_{ST, y} Baseline emissions from steam consumption in reference facility year y

BE_{HPGOX, y}
Baseline emissions from electricity consumption by oxygen compressors in year y
BE_{HPGAN, y}
Baseline emissions from electricity consumption by nitrogen compressors in year y

Variable	Uni	2008	2009	2010	2011	2012	Source
BE _{ELEC, y}	t CO ₂	10,903	10,503	11,323	10,666	6,027	Equation (9)
BE _{AIR, y}	t CO ₂	266,534	256,751	276,813	260,754	147,326	Equation (10)
BE _{ST, y}	t CO ₂	4,930	4,830	5,281	5,045	2,891	Equation (11)
BE _{HPGOX} ,	t CO ₂	78,663	75,775	81,696	76,956	43,480	Equation (12)
BE _{HPGAN} ,	t CO ₂	21,548	21,858	25,208	23,379	14,107	Equation (13)

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia"

BEy	t CO ₂	382,578	369,717	400,321	376,800	213,831	Calculated
-----	----------------------	---------	---------	---------	---------	---------	------------

Page 17

F.3. Leakage:

No leakage has been identified within the project.

Variable	Unit	2008	2009	2010	2011	2012	Source
LE _y	t CO ₂	0	0	0	0	0	Section D.1.3 of the PDD

F.4. Summary of the emissions reductions during the monitoring period:

(15)
$$ER_y = BE_y - PE_y - LE_y$$

where

 $\begin{array}{ll} ER_y & Emission\ reduction\ in\ year\ y \\ BE_y & Total\ Baseline\ Emissions\ in\ year\ y \\ PE_y & Total\ Project\ Emissions\ in\ year\ y \end{array}$

LE_y Leakage Emissions in year y, with LE_y = 0 for all years.

Variable	Unit	2008	2009	2010	2011	2012	Source
BE _y	$\begin{array}{c} t \\ CO_2 \end{array}$	382,578	369,717	400,321	376,800	213,831	Equation (14)
PE _y	$\begin{array}{ c c }\hline t \\ CO_2 \end{array}$	267,955	248,277	265,681	249,374	137,922	Equation (6)
LE _y	t CO ₂	0	0	0	0	0	Section D.1.3 of the PDD
ER _y	t CO ₂	114,623	121,440	134,640	127,426	75,909	Calculated

Total values for the Verification period:

Baseline emissions (BE): 1743,247 t CO₂

Project emissions (PE): 1169,209 t CO₂ Emission reductions (ER): 574,038 t CO₂

F.5. Emissions reductions during the monitoring period by source:

Variable	Unit	2008	2009	2010	2011	2012
Baseline Emissions	t CO ₂	382,578	369,717	400,321	376,800	213,831
Consumption of grid- based electricity for compressed air provided to the low-pressure air separation units (SB1)	t CO ₂	266,534	256,751	276,813	260,754	147,326
Consumption of grid- based electricity by the low pressure air separation units (SB2)	t CO ₂	10,903	10,503	11,323	10,666	6,027
Fuel combustion for the production of steam provided to the low-pressure air separation units (SB3)	t CO ₂	4,930	4,830	5,281	5,045	2,891
Consumption of grid- based electricity by the oxygen compressors (SB4)	t CO ₂	78,663	75,775	81,696	76,956	43,480
Consumption of grid- based electricity by the nitrogen compressors (SB5)	t CO ₂	21,548	21,858	25,208	23,379	14,107
Project Emissions	t CO ₂	267,955	248,277	265,681	249,374	137,922
Consumption of grid- based electricity by air compressors for compressed air provided to the ALS plant (SP1)	t CO ₂	228,488	213,999	227,730	215,616	122,024
Consumption of grid- based electricity by ALS plant (SP2)	t CO ₂	37,431	32,501	35,720	32,070	15,289
Fuel combustion by steam boiler for the production of steam provided to the ALS plant (SP3)	t CO ₂	2,036	1,777	2,231	1,689	0,609
Leakage Emissions	t CO ₂	0	0	0	0	0
Emission Reductions	t CO ₂	114,623	121,440	134,640	127,426	75,909

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia"

Page 19

SECTION G Overview Table

Variable	Description Total	Units	2008	2009	2010	2011	2012
EC _{ALS, y}	electricity consumption by ALS plant Specific	MWh	372,655	354,983	383,079	367,824	211,115
SFC _{ELEC, AIR}	electricity consumption for compressed air Total	MWh / 1000 Sm ³	0,1041	0,1041	0,1041	0,1041	0,1041
Qair, als, y	consumption of compressed air by ALS plant Total electricity	1000 Sm ³	586,605	518,035	577,352	525,683	254,168
EC _{AIR, y}	consumption for compressed air consumed by ALS plant	MWh	61,049	53,913	60,086	54,709	26,452
Q _{ST, y}	Total steam consumption by ALS plant Carbon emission	Gcal	16,376	14,294	17,952	13,586	4,898
EF _{GAS, ST}	factor for steam generated by natural gas combustion Carbon	t CO ₂ / Gcal	0,1243	0,1243	0,1243	0,1243	0,1243
EF _{ELEC, y}	emission factor for grid-based electricity CO2 emissions	t CO ₂ / MWh	0,613	0,603	0,594	0,586	0,578
PE _{ST, y}	from consumption of steam by ALS plant	t CO ₂	2,036	1,777	2,231	1,689	0,609
$PE_{AIR,y}$	CO2 emissions from consumption of	t CO ₂	37,431	32,501	35,720	32,070	15,289

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia" Page 20

	compressed air by ALS plant CO2 emissions						
PE _{ELEC, y}	from electricity consumption by ALS plant	t CO ₂	228,488	213,999	227,730	215,616	122,024
PE _y	Total Project Emissions	t CO ₂	267,955	248,277	265,681	249,374	137,922
	Total high-						
P _{GOX, y}	pressure gaseous oxygen delivery by ALS plant Total deliver of high	1000 Sm ³	650,564	639,139	691,502	666,659	381,746
P _{LOX, y}	pressure oxygen from ALS liquid oxygen storage tank	1000 Sm ³	10,483	8,517	16,589	9,776	5,858
P _{OX, y}	Total delivery of high pressure oxygen Total high-	1000 Sm ³	661,047	647,656	708,091	676,435	387,604
P _{GAN, y}	pressure nitrogen production by ALS plant Specific	1000 Sm ³	181,082	186,818	218,491	205,544	125,742
SC_{ST}	steam consumption by reference plant Specific compressed	Gcal / 1000 Sm ³ O ₂	0,0600	0,0600	0,0600	0,0600	0,0600
SC _{AIR}	air consumption of the reference	1000 Sm ³ Air / 1000 Sm ³ O ₂	6,3187	6,3187	6,3187	6,3187	6,3187
SFC _{ELEC, AIR}	plant Specific electricity consumption for compressed	MWh / 1000 Sm³ Air	0,1041	0,1041	0,1041	0,1041	0,1041

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia"

Page 21

							I
	air						
SFC _{ELEC}	Specific electricity consumption of the cold box of the reference plant	$\begin{array}{c} MWh \: / \\ 1000 \: Sm^3 \\ O_2 \end{array}$	0,0269	0,0269	0,0269	0,0269	0,0269
SFC _{ELEC} , HPGOX	Specific electricity consumption by oxygen compressors	$\begin{array}{c} MWh \: / \\ 1000 \: Sm^3 \\ O_2 \end{array}$	0,1941	0,1941	0,1941	0,1941	0,1941
SFC _{ELEC, HPGAN}	Specific electricity consumption by nitrogen compressors Carbon	$\begin{array}{c} MWh \ / \\ 1000 \ Sm^3 \\ N_2 \end{array}$	0,1941	0,1941	0,1941	0,1941	0,1941
EF _{GAS} , ST	emission factor for steam generated by natural gas combustion	t CO ₂ / Gcal	0,1243	0,1243	0,1243	0,1243	0,1243
EF _{ELEC, y}	Carbon emission factor for the consumption of grid-based electricity	t CO ₂ / MWh	0,613	0.603	0.594	0,586	0,578
EF _{ELEC, GEN, y}	Carbon emission factor for the generation of grid-based electricity		0,556	0,550	0,545	0,540	0,536
TL _{ELEC, y}	Transmission losses for grid-based electricity CO2	%	9,400	8,793	8,308	7,823	7,338
BE _{ST, y}	emissions from steam consumption by reference	t CO ₂	4,930	4,830	5,281	5,045	2,891
BE _{AIR, y}	plant CO2 emissions from consumption of	t CO ₂	266,534	256,751	276,813	260,754	147,326

"Construction of new Air Separation Plant by Air Liquide Severstal, Russia" Page 22

ER _y	Emission Reductions	t CO ₂	114,623	121,440	134,640	127,426	75,909
BEy	Total baseline emissions	t CO ₂	382,578	369,717	400,321	376,800	213,831
BE _{HPGAN, y}	emissions from electricity consumption by nitrogen compressors	t CO ₂	21,548	21,858	25,208	23,379	14,107
$BE_{HPGOX,y}$	plant CO2 emissions from electricity consumption by oxygen compressors CO2	t CO ₂	78,663	75,775	81,696	76,956	43,480
$ extbf{BE}_{ extbf{ELEC, y}}$	compressed air by reference plant CO2 emissions from electricity consumption by reference	t CO ₂	10,903	10,503	11,323	10,666	6,027

SECTION H Contact Information

Organisation:	Air Liquide Severstal CJSC
Street/P.O.Box:	ul. Ustyuzhenskaya, 97
Building:	
City:	Cherepovets
State/Region:	Vologodskaya Region
Postal code:	162600
Country:	Russian Federation
Phone:	+7 (8202) 53 35 93
Fax:	+7 (8202) 53 35 94
E-mail:	
URL:	www.airliquide.ru
Represented by:	
Title:	General Director
Salutation:	Mr.
Last name:	Shuvalov
Middle name:	
First name:	Alexei
Department:	
Phone (direct):	+ 7 (495) 641 28 98
Fax (direct):	+ 7 (8202) 53 35 94
Mobile:	+7 921 54 54 834
Personal e-mail:	Alexei.Shuvalov@airliquide.com